Calculate the minimum volume of oxygen required for the complete combustion of a mixture of \(20 \mathrm{~cm}^3\) of \(\mathrm{CO}\) and \(20 \mathrm{~cm}^3\) of \(\mathrm{H}_2 \)
A. \(10 \mathrm{~cm}^3\) B. \(20 \mathrm{~cm}^3\) C. \(40 \mathrm{~cm}^3\) D. \(80 \mathrm{~cm}^3\)
Correct Answer: B
Explanation
Thus, \(20 \mathrm{~cm}^3\) of \(\mathrm{CO}\) will require \(10 \mathrm{~cm}^3\) of \(\mathrm{O}_2\). \(2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \underset{2}{2}+\mathrm{H}_2 \mathrm{O}_{(8)}\) \(20 \mathrm{~cm}^3: 10 \mathrm{~cm}^3: 20 \mathrm{~cm}^3\) Thus, \(20 \mathrm{~cm}^3\) of \(\mathrm{H}_2\) will require \(10 \mathrm{~cm}^3\) of \(\mathrm{O}_2\). Total volume of \(\mathrm{O}_2\) required \(=10 \mathrm{~cm}^3+10 \mathrm{~cm}^3\) \(=20 \mathrm{~cm}^3\)