A. \(2 / 3\) B. 1 C. \(\mathrm{K}+1\) D. \((\mathrm{K}-1)^2\)
Correct Answer: A
Explanation
To find the variance of the numbers \(k, k+1, k+\) 2 \(\operatorname{mean} \bar{x}=\frac{\sum F x}{n}=\frac{(k)+(k+1)+(k+2)}{3}=\frac{3 k+3}{3}\) \(\frac{3(k+1)}{3}=k+1\) variance \(S^2=\frac{\Sigma(x-x)^2}{n}\) \(S^2=\frac{[k-(k+1)]^2+[k+1-(k+1)]^2+[k+1-(k+2)]^2}{3}\) this gives \(\Rightarrow \frac{1+0+1}{3}=\frac{2}{3}\) \(\therefore \mathrm{S}^2=\frac{2}{3}\)