At what points does the line \(y=2 x+1\) intersect the curve \(y=2 x^2+5 x-1\) ?
A. \((-2,-3) ;(1 / 2,2)\) B. \((-1 / 2,0) ;(2,5)\) C. \((1 / 2,2) ;(1,3)\) D. \((1,3):(2,5)\)
Correct Answer: A
Explanation
At the point of intersection of \(y=2 x+1\) and \(y=2 x^2+5 x-1\), we can write, \begin{array}{l} 2 x+1=2 x^2+5 x-1 \\ 2 x^2+5 x-2 x-1-1=0 \\ 2 x^2+3 x-2=0 \\ 2 x^2+4 x-x-2=0 \\ 2 x(x+2)-1(x+2)=0 \\ (2 x-1)(x+2)=0 \\ \text { Either } 2 x-2=0 \text { or } x+2=0 \\ 2 x=1 \text { or } x=-2, x=1 / 2 \text { or } x=-2 \end{array} To get the value of \(y\) for each value of \(x\), we substitute for \(x\) in either of the two equations; note that using the equation of the line will be easier when \(x=1 / 2, y=2(1 / 2)+1=1+1=2\) when \(x=-2, y=2(-2)+1=-4+1=-3\) then, the points of intersection are \((1 / 2,2)\) and \((-2,-3)\)