The interior angles of a quadrilateral are \((x+15)^{\circ},(2 x-\) \(45)^{0},(x-30)^{0}\) and \((x+10)^{0}\). Find the value of the least interior angle.
A. \(112^{\circ}\) B. \(102^{\circ}\) C. \(82^{\circ}\) D. \(52^{\circ}\)
Correct Answer: A
Explanation
Sum of interior angle of a polygon \(=360^{\circ}\) \(\Rightarrow(\mathrm{X}+15)^{0}+(2 \mathrm{X}-45)^{0}\left(\mathrm{X}-30^{0}\right)+(\mathrm{x}+10)=360\)xpanding, \(\Rightarrow[x+2 x+x+x]+(15+10-45-30]^{0}=\) \(360^{\circ}\) \(=5 x^{0}-50^{0}=360\), \(x^{0}=410 / 5=82^{0}\) (values of angle) Substituting \(x^{0}\) to get the least interior angle \(\Rightarrow(x-15)=82^{0}+15=97\) \(\Rightarrow(2 x-45)^{0}=\left(2(82)-45^{0}\right)^{0}=119^{0}\) \(\Rightarrow(\mathrm{x}-30)^{0}=(82-30)^{0}=52^{0}\) \(\Rightarrow(x+10)^{0} \Rightarrow(82+10)^{0}=52\) \(\therefore\) The least of the interior angle \(=(x-30)^{0}\)