If \(3x^{2} + 2y^{2} + xy + x - 7 = 0\), find \(\frac{\mathrm d y}{\mathrm d x}\) at the point (-2, 1).
Explanation
\(3x^{2} + 2y^{2} + xy + x - 7 = 0\) We differentiate y implicitly with respect to x. \(6x + 2(2y)\frac{\mathrm d y}{\mathrm d x} + y + x\frac{\mathrm d y}{\mathrm d x} + 1 = 0\) \(\frac{\mathrm d y}{\mathrm d x} = \frac{- y - 1 - 6x}{4y + x}\) = \(\frac{-(6x + y + 1)}{4y + x}\). At the point (-2, 1), \(\frac{\mathrm d y}{\mathrm d x} = \frac{-(-12 + 1 + 1)}{4(1) - 2}\) = \(\frac{-(-10)}{2} = 5\)