Mathematics (x) | 43 | 46 | 48 | 39 | 30 | 60 | 8 | 45 | 40 |
Physics (y) | 54 | 53 | 63 | 30 | 44 | 75 | 20 | 33 | 49 |
(a)(i) and (iii) Scale: On each axis, 2 cm represents 10 marks.
(ii) \(\bar{x} = \frac{43 + 46 + 48 + 39 + 30 + 60 + 8 + 45 + 40}{9} = \frac{359}{9} = 39.89 \approxeq 39.9\)
\(\bar{y} = \frac{54 + 53 + 63 + 30 + 44 + 75 + 20 + 33 + 48}{9} = \frac{421}{9} = 46.78 \approxeq 46.8\)
\((\bar{x}, \bar{y}) = (39.9, 46.8)\)
(b)
\(x\) | \(y\) | \(xy\) | \(x^{2}\) |
43 | 54 | 2322 | 1849 |
46 | 53 | 2438 | 2116 |
48 | 63 | 3024 | 2304 |
39 | 30 | 1170 | 1521 |
30 | 44 | 1320 | 900 |
60 | 75 | 4500 | 3600 |
8 | 20 | 160 | 64 |
45 | 33 | 1485 | 2025 |
40 | 49 | 1960 | 1600 |
Total | | 18379 | 15979 |
The equation of the line :
\(y - \bar{y} = m(x - \bar{x})\)
\(m = \frac{\sum {xy} - N(\bar{x})(\bar{y})}{\sum {x^{2}} - N(\bar{x})^{2}}\)
= \(\frac{18379 - 9 \times 39.9 \times 46.8}{15979 - (39.9)^{2}} = \frac{18379 - 16805.88}{15979 - 9 \times (39.9)^{2}}\)
= \(\frac{1573.12}{1650.91} \approxeq 0.95\)
Substituting in the equation, \(y - \bar{y} = m(x - \bar{x})\)
\(y - 46.8 = 0.95(x - 39.9)\)
= \(y = 0.95x + 8.895\)
(c) y = 0.95x + 8.895
when x = 28,
\(y = (0.95 \times 28) + 8.895\)
= \(26.6 + 8.895 \approxeq 35.5 marks\).
For a student who scored 28 in Mathematics, his mark in Physics is 35.5.