Express \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\) in the form \(p\sqrt{3} + q\sqrt{2}\).
A. \(7\sqrt{3} - \frac{17\sqrt{2}}{3}\) B. \(7\sqrt{2} - \frac{17\sqrt{3}}{3}\) C. \(-7\sqrt{2} + \frac{17\sqrt{3}}{3}\) D. \(-7\sqrt{3} - \frac{17\sqrt{2}}{3}\)
Correct Answer: B
Explanation
Given \(\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}}\), first, we rationalise by multiplying through with \(2\sqrt{3} - 3\sqrt{2}\) (the inverse of the denominator). \((\frac{8 - 3\sqrt{6}}{2\sqrt{3} + 3\sqrt{2}})(\frac{2\sqrt{3} - 3\sqrt{2}}{2\sqrt{3} - 3\sqrt{2}})\) = \(\frac{16\sqrt{3} - 24\sqrt{2} - 18\sqrt{2} + 18\sqrt{3}}{4(3) - 6\sqrt{6} + 6\sqrt{6} - 9(2)}\) = \(\frac{34\sqrt{3} - 42\sqrt{2}}{-6} = 7\sqrt{2} - \frac{17\sqrt{3}}{3}\)