An excess \(0.10\) moldm \(^{-3} HCl\) was poured into a big beaker containing \(2 g\) of limestone. The unreacted acid required \(25 cm ^{3}\) of \(0.10 moldm ^{-3}\) potassium carbonate to neutralize it. What was the original volume of the acid? [ Ca =40, C\) \(=12, O =16]
A. \(250 cm ^{3}\) B. \(260 cm ^{3}\) C. \(400 cm ^{3}\) D. \(450 cm ^{3}\)
Correct Answer: D
Explanation
Since \(HCl\) is in excess, \(CaCO _{3}\) (in limestone) is the limiting reagent. The equation of the rxn is: \begin{gathered} \underset{\downarrow}{2 HCl _{(2 q)}}+ CaCO _{3( s )} \\aCl _{2( s )}+ H _{2} O _{(t)}+ CO _{2(s)} \\ \eta_{H C l}: \eta_{ CaCO }=2: 1 \\ \eta_{H C l}=2 \eta_{ CaCO _{3}} \end{gathered} No of mole \(=\frac{\text { mass }}{\text { molar mass }}\) \begin{aligned} &=40+12+(3 \times 16) \\ &=100 g / mol \\ \eta_{\text {Cuco }} &=\frac{2 g }{100 g / mol }=0.02 mol \\ & \therefore \eta_{n c y}=2 \times 0.02 mol \\ &=0.04 mol \end{aligned} The reaction of the unreacted acid with \(K _{2} CO _{3}\) is \(2 HCl _{(a q)}+ K _{2} CO _{3} \rightarrow 2 KCl _{\text {(aq) }}+ H _{2} O _{(n}\) \begin{aligned} &\eta_{i 1 C 1}: \eta_{K_{2}} CO _{3}=2: 1 \\ &\eta_{u C 4}=2 \eta_{\kappa_{2} CO } \\ &\text { Using the relation } \\ &n=C \times V \end{aligned} Where: \(n-\) no of mole \(c\) - molar concentration \(v\) - volume in \(dm ^{3}\) we calculate the no of mole of \(K _{2} CO _{3}\) that reacted thus: that reacted: \begin{aligned} \eta_{H C L}^{T} &=\eta_{H C T}+\eta_{H C L} \\ &=0.04 mol +5.0 \times 10^{-3} mol \\ &=0.045 mol \end{aligned} Volume \(\left(V_{n c i}\right)\) of acid \(\left( dm ^{-3}\right)\) \(=\frac{\text { Total no of mole of } HCl }{\text { concentration in moldm }}\) i.e. \(V_{H C T}=\frac{\eta_{H C}^{T}}{C_{M C}}=\frac{0.045}{0.10}=0.45 dm ^{3}\) \(0.45 \times 1000 cm ^{3}=450 cm ^{3}\)