What is the percentage yield of water if \(0.90 g\) of water is obtained when \(29.0 g\) of butane is burned in excess oxygen?
A. \(0.02 \%\) B. \(0.20 \%\) C. \(2.0 \%\) D. \(10.0 \%\)
Correct Answer: C
Explanation
\(2 C _{4} H _{10}+13 O _{2} \rightarrow 8 CO _{2}+10 H _{2} O\) M.M of butane \(\Rightarrow(12 \times 4)+(1 \times 10) \Longrightarrow 58 gmol ^{-1}\) Mole of butane \(\Rightarrow\left(\frac{299}{58 \text { gmol }^{-1}}\right)\) \(\Rightarrow 0.5 mol\)rom the equation of reaction, 2 moles of \(C _{4} H _{10}\) produces 10 moles of \(H _{2} O\) \(0.5\) mole of \(C _{4} H _{10}\) produces \(\left(\frac{299}{2} \times 0.5\right)\) mole \(=2.5\) moles Mass of water produced theoretically \(=(2.5 \times 18) \Rightarrow 45 g\) Actual yield of \(H _{2} O \Rightarrow 0.90 g\) \(\%\) yield \(=\frac{\text { Actual yield }}{\text { Theoretical }} \times 100 \%\) \(\Rightarrow \frac{0.90 g }{45 g } \times 100 \%\) \(\Rightarrow 2 \%\) You can also use the ratio of moles \(0.90 g (0.90 / 18)\) mole \(\Longrightarrow 0.05\) mole of \(H _{2} O\) of \(H _{2} O\) \(\%\) yield \(=\frac{0.05}{2.5} \times 100 \% \Rightarrow 2 \%\)