The standard reduction potentials for the following halfcell reactions are, \(2 H _{2} O _{(j)} \rightarrow O _{2(k)}+4 H _{((4)}^{+}+4 eE ^{\circ}=-1.23 V\) \(2 H _{2} O _{20)} \rightarrow 2 O _{2(e)}+4 H _{(a q)}^{-}+4 eE ^{\circ}=-0.68 V\) What is the \(E ^{\circ}\) for the reaction above? \(2 H _{2} O _{2(D}=2 H _{2} O _{( l )}+ O _{2( g )}\) at \(298 K\) ?
A. \(-0.68\) B. \(-1.23 V\) C. \(+0.55 V\) D. \(+1.91 V\)
Correct Answer: C
Explanation
$$ 2 H _{2} O \rightarrow O _{2}+4 H +4 e - E ^{\circ}=-1.23 V \ldots \text { (i) } $$ \(2 H _{2} O _{2} \rightarrow 2 O _{2}+4 H ++4 e ^{-}, E ^{0}=-0.68 V \ldots\) (ii) We are to get: \(2 H _{2} O _{2} \rightarrow 2 H _{2} O + O _{2}\) To have this, equation (i) is reversed and then added to equation (ii) Reversing equation (i), we have: \(O _{2}+4 H ^{+}+4 e ^{-}=2 H _{2} O , E ^{\circ}=+1.23\) Note that the sign is reversed as well.dding the equation so obtained to cquation (ii), we have: \(2 H _{2} O + O _{2}+4 H ^{+}+4 e ^{-}=2 O _{2}+4 H ^{+}+4 e ^{-}+2 H _{2} O\) \begin{aligned} ^{\circ} &=(-0.68+1.23) V \\ &=+0.55 V \end{aligned}verything cancels out as already shown. Also, \(1 mol\) of \(O _{2}\) cancels \(1 mol\) of \(O _{2}\) on both sides. Then, we have: \(H _{2} O _{2}= O _{2}+2 H _{2} O , E ^{\circ}=+0.55 V\)