Calculate the mass of copper deposited when a current of 0.5 ampere was passed through a solution of copper(II) chloride for 45 minutes in an electrolytic cell. [Cu = 64, F = 96500Cmol-1]
A. 0.300g B. 0.250g C. 0.2242g D. 0.448g
Correct Answer: D
Explanation
M = \(\frac{\text{Molar mass × Quantity of Electricity}}{\text{96500 × no of charge}}\) = \(\frac{MmIT}{96500n}\) Copper II Chloride = CuCl2 CuCl2 → Cu2+ + 2Cl2 Mass of compound deposited = \(\frac{\text{Molar mass × Quantity of Electricity}}{\text{96500 × no of charge}}\) Q = IT I = 0.5A T = 45 × 60 T = 2700s Q = 0.5 × 2700 = 1350c Molarmass = 64gmol-1 no of charge = + 2 Mass = \(\frac{64 \times 1350}{96500 \times 2}\) Mass = 0.448g